Mark Scheme (Results)

January 2022

Pearson Edexcel International Advanced Level in Chemistry (WCH15)
Paper 01:Transition Metals and Organic Nitrogen Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022
Question Paper Log Number P69508A
Publications Code WCH15_01_2201_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Section A (multiple choice)

Question Number	Correct Answer	Mark
$\mathbf{1 (a)}$	The only correct answer is B (covalent and dative covalent only)	
	\boldsymbol{A} is incorrect because there is no ionic bonding within the complex Cis incorrect because there is dative covalent bonding between the metal ion and the ligand \boldsymbol{D} is incorrect because there is covalent bonding within NH_{3} and $\mathrm{H}_{2} \mathrm{O}$	$\mathbf{(1)}$

Question Number	Correct Answer	Mark
1(b)	The only correct answer is D $\left(\left[\mathrm{CoCl}_{4}\right]^{2-}\right)$	
	A is incorrect because $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ is square planar B is incorrect because $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]$ is octahedral C is incorrect because $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ is octahedral	(1)

Question Number	Correct Answer	Mark		
$\mathbf{1 (c)}$	The only correct answer is $\mathbf{C}\left[\mathrm{Ni}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]^{2+}$			
\boldsymbol{A} is incorrect because the ligand is tridentate				
\boldsymbol{B} is incorrect because both the ligands are monodentate				
\boldsymbol{D} is incorrect because the ligand is hexadentate			\quad	$\mathbf{(1)}$
:---				

Question Number	Correct Answer	Mark
2(a)	The only correct answer is $\mathbf{C}\left(\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}\right)$	(1)
	\boldsymbol{A} is incorrect because this is the reaction at the cathode \boldsymbol{B} is incorrect because this is the reverse of the reaction at the cathode \boldsymbol{D} is incorrect because this is the reverse of the reaction at the anode	

Question Number	Correct Answer	Mark
2(b)	The only correct answer is B (emissions do not contribute to climate change)	(1)
	A is incorrect because methanol produces more energy per mole	
C is incorrect because the hydrogen gas is more difficult to store		
D is incorrect because both can be made from renewable resources		

Question Number	Correct Answer	Mark
3(a)	The only correct answer is A (silver nitrate)	(1)
	B is incorrect because silver hydroxide is insoluble C is incorrect because silver chloride is insoluble D is incorrect because silver carbonate is insoluble	

Question Number	Correct Answer	Mark
3(b)	The only correct answer is $\mathbf{B}\left(2 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ acidified $\mathrm{VO}_{2}{ }^{+}(\mathrm{aq})$ and $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ acidified $\mathrm{VO}^{2+}(\mathrm{aq})$ \boldsymbol{A} is incorrect because the electrolyte will be $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ wrt the vanadate ions \boldsymbol{C} is incorrect because the electrolyte does not contain any $\mathrm{VO}^{2+}(a q)$ ions and the concentration wrt $\mathrm{VO}_{2}{ }^{+}$ions is $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ D is incorrect because the electrolyte does not contain any $\mathrm{VO}_{2}{ }^{+}(a q)$ ions and the concentration wrt VO^{2+} ions is $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$	(1)

Question Number	Correct Answer	Mark
3(c)	The only correct answer is $\mathbf{B}\left(\mathrm{VO}_{2}^{+}(\mathrm{aq})+\mathrm{Ag}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{VO}^{2+}(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)$	$\mathbf{(1)}$
	\boldsymbol{A} is incorrect because Ag^{+}cannot oxidise $\mathrm{VO}^{2+}($ under standard conditions $)$ \boldsymbol{C} is incorrect because the reaction is not feasible and is unbalanced \boldsymbol{D} is incorrect because the reaction is not feasible and is unbalanced	

Question Number	Correct Answer	Mark
3(d)	The only correct answer is C $(+0.20)$	(1)
	\boldsymbol{A} is incorrect because the expression $E_{\text {cell }}^{\theta}=-\left(E_{R}+E_{L}\right)$ was used	
\boldsymbol{B} is incorrect because the expression $E_{\text {cell }}^{\theta}=E_{L}-E_{R}$ was used		
\boldsymbol{D} is incorrect because the expression $E_{\text {cell }}^{\theta}=E_{R}+E_{L}$ was used		

Question Number	Correct Answer	Mark
3(e)	The only correct answer is B($\mathrm{Ag}(\mathrm{s})\left\|\mathrm{Ag}^{+}(\mathrm{aq})\right\|\left\|\left[\mathrm{VO}_{2}{ }^{+}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})\right],\left[\mathrm{VO}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]\right\| \mathrm{Pt}(\mathrm{s})$) \boldsymbol{A} is incorrect because a solid line is used to separate species in the same phase C is incorrect because the order of species is $R-O-R-O$ and a solid line is used to separate species in the same phase \mathbf{D} is incorrect because the order of species is $R-O-R-O$	(1)

Question Number	Correct Answer	Mark
$\mathbf{4}$	The only correct answer is $\mathbf{D}(0.15)$ \boldsymbol{A} is incorrect because the volume of the solution has not been scaled up to $1 \mathrm{dm}^{3}$ and uses only 1 mol of $\mathrm{SO}_{4}{ }^{2-}$ ions per mole of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ \mathbf{B} is incorrect because this uses only $1 \mathrm{~mol}^{2} \mathrm{SO}_{4}{ }^{2-}$ ions per mole of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ \boldsymbol{C} is incorrect because this is the concentration of $\mathrm{Fe}^{3+}(a q)$	(1)

Question Number	Correct Answer	Mark	
$\mathbf{5}$	The only correct answer is A		
	B is incorrect because the structure has no C=O group C is incorrect because the structure has no O-H group Dis incorrect because the structure has no O-H group		

Question Number	Correct Answer	Mark
$\mathbf{6 (a)}$	The only correct answer is C (five)	(1)
	\boldsymbol{A} is incorrect because it assumes all the carbon atoms are in a different environment \boldsymbol{B} is incorrect because it assumes only two of the benzene ring carbon atoms are in the same environment \boldsymbol{D} is incorrect because it assumes the carbon atoms at position 1 and position 4 of the ring are in the same environment	

Question Number	Correct Answer	Mark
$\mathbf{6 (b)}$	The only correct answer is D (electrophilic substitution) of ring system B is incorrect because the nitrating mixture produces an electrophile, $\mathrm{NO}_{2}{ }^{+}$, C is incorrect because addition does not occur due to stability of ring system	(1)

Question Number	Correct Answer	Mark
$\mathbf{6 (c)}$	The only correct answer is $\mathbf{A}((10 \times 85 \times 227) C(92 \times 100))$ \boldsymbol{B} is incorrect because the scaling factor for the yield is incorrect \boldsymbol{C} is incorrect because the scaling factor for the yield is incorrect \boldsymbol{D} is incorrect because the scaling factor for the yield is incorrect	$\mathbf{(1)}$

Question Number	Correct Answer	Mark
$\mathbf{7}$	The only correct answer is A (92.0261)	(1)
	B is incorrect because it uses $0=16$ C is incorrect because it has 5 hydrogens in the structure instead of 4 \mathbf{D} is incorrect because it has 5 hydrogens in the structure instead of 4 and uses $0=16$	

Question Number	Correct Answer	Mark
$\mathbf{8 (a)}$	The only correct answer is C (0.040)	(1)
	A is incorrect because the ratio of thiosulfate to chlorine used in the calculation is $1: 2$ B is incorrect because the ratio of thiosulfate to chlorine used in the calculation is $1: 1$ \boldsymbol{D} is incorrect because the ratio of thiosulfate to chlorine used in the calculation is $4: 1$	

Question Number	Correct Answer	Mark
8(b)	The only correct answer is D (10.0)	(1)

	\boldsymbol{A} is incorrect because this is the exact amount if the concentration is 0.038		
\boldsymbol{B} is incorrect because this is the exact amount if the concentration is 0.040			
\boldsymbol{C} is incorrect because this is the exact amount if the concentration is 0.042		\quad	
:---			

Question Number	Correct Answer	Mark
$\mathbf{8 (c)}$	The only correct answer is D (blue-black to colourless)	(1)
	B is incorrect because the colour change is the wrong way around and without the starch indicator C is incorrect because the colour change is the wrong way around	

Question Number	Correct Answer	Mark
9	The only correct answer is B (two)	(1)

\boldsymbol{A} is incorrect as both AlO_{2}^{-}and $\left[\mathrm{CrCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{+}$contain a metal with oxidation number of +3
C is incorrect as the Fe in $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ has an oxidation number of +2 and the Cr in $\mathrm{CrO}_{4}{ }^{2-}$ has an oxidation number of +6 \mathbf{D} is incorrect as the Fe in $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ has an oxidation number of +2 and the Cr in $\mathrm{CrO}_{4}{ }^{2-}$ has an oxidation number of +6
(Total for Question 9 = 1 mark) TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Acceptable Answers	Additional Guidance	Mark
10(a)(i)	An explanation that makes reference to the following points: - the shape is linear / bond angle is 180° (1) - as there are 2 pairs of (bonding) electrons (around central Ag^{+}) / each N donates a (lone) pair of electrons (to Ag^{+}) - which adopt a position to minimise repulsion (between electron pairs / bonds) (1)	allow straight Shape / angle can be shown on a diagram Ignore planar Allow each ammonia donates a (lone) pair of electrons Allow which adopt a position to maximise separation (between electron pairs / bonds) Do not award just minimising repulsion between ligands / ammonia	(3)

Question Number	Acceptable Answers	Additional Guidance	Mark
10(a)(ii)	An explanation that makes reference to the following points: - Ag^{+}/ silver ion has a full d-subshell / d-orbitals - so electrons cannot be promoted (to higher d orbitals) / no d-d transitions / no excitation of electrons / no transition of electrons	M1 can be shown with a correct electron configuration, $[\mathrm{Kr}] 4 \mathrm{~d}^{10}$ Do not award the subshell is empty Do not award d orbital (singular) is full unless clarified by $4 d^{10}$ / later reference to orbitals Ignore references to all light is reflected / no light is absorbed Do not award the subshell / orbitals cannot be split Do not award the wavelength / frequency is outside the visible region	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
10(b)(i)	An answer that makes reference to the following points: - correct products - balancing of equation M 2 is dependent on M1	Ignore state symbols even if incorrect	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
10(b)(ii)		Allow displayed / structural / skeletal formula or any correct hybrid of the 3 types of structure Allow carboxylate ion Do not award -HO on terminal OH groups	(1)

Question Number	Acceptable Answers	Additional Guidance	Mark
10(c)	- $\mathrm{Zn}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}+2 \mathrm{e}^{-}$	$\mathrm{Zn}+2 \mathrm{OH}^{-}-2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}$ Allow $\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$ Allow 2e Ignore state symbols even if incorrect Do not award ' \rightleftharpoons '	(1)

(Total for Question $10=9$ marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{1 1 (a)}$	\bullet tertiary (amine) $/ 3^{\circ}$ (amine)	Allow tertiary / tertiery / tertiary	(1)
		Do not award $3^{\text {rd }} /$ third (amine) Do not award tertiary amide $/ 3^{\circ}$ amide lgnore attempts to explain classification	

Question Number	Acceptable Answers	Additional Guidance	Mark
11(b)	An explanation that makes reference to the following points: - the nitrogen / N (atom) has a lone pair of electrons (1) - which can forms a hydrogen bond to water (to the $\partial+$ hydrogen) - and can accept a H^{+}ion (from water) / form $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$/ form a dative bond to a H^{+}ion (from water) - leaving a (slight excess) of hydroxide ions	Mark Independently M1 and M2 can be shown on a diagram Allow 'nitrogen / \mathbf{N} is electronegative (and small)' Allow pyridine can form intermolecular forces with water that are strong enough to overcome the hydrogen bonds in water M3 and M4 can be shown by correct equation $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}+\mathrm{OH}^{-}$	(4)

Question Number	Acceptable Answers	Additional Guidance	Mark
11(c)	An answer that makes reference to the following points - arrow from lone pair on nitrogen atom to carbon atom - dipole shown and arrow from $\mathrm{C}-\mathrm{Cl}$ bond to Cl or just beyond - formula of intermediate including the + charge on the N atom - arrow from N-H bond to $\mathrm{N}(+)$	Allow M1 and M2 via formation of a carbocation Ignore d^{-}on N Do not award N^{-}	(4)
Example			$\mathrm{ct}+\mathrm{HCl})$

Question Number	Acceptable Answers	Additional Guidance	Mark
12(a)	 (1)	Do not award acyl chlorides	(2)

Question Number	Acceptable Answers		Additional Guidance	Mark
12(b)		 (1)	Allow displayed / structural / skeletal formula or any correct hybrid of the 3 types of structure e.g. $\mathrm{CCl}_{2} \mathrm{CH}_{2}$ (1) and $\mathrm{CH}_{2} \mathrm{CHCl}$ (1)	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark	
12(c)	• calculation of molar mass of repeat unit	(1)	$\underline{\text { Example of calculation }}$$(12 \times 12)+14=158\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$	(2)
	• calculation of number of repeat units	$\mathbf{(1)}$	$300000 \div 158=1898.73$ $=1900($ units $)$ Allow $1898 / 1899$ i.e allow the value to be rounded up or rounded down lgnore SF Final answer must be whole number Allow TE for incorrect molar mass	

Question Number	Acceptable Answers	Additional Guidance
13(a)		Allow reversal of dots and crosses Allow all dots or all crosses Allow overlapping circles
Allow lone pair to be shown as		
separate electrons		
Ignore lines between As and H		

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{1 3 (b) (i)}$	$\mathrm{AsH}_{3} \rightarrow \mathrm{As}+3 \mathrm{H}^{+}+3 \mathrm{e}^{(-)}$	Allow $\mathrm{AsH}_{3}-3 \mathrm{e}^{(-)} \rightarrow \mathrm{As}+3 \mathrm{H}^{+}$ Ignore state symbols even if incorrect	$\mathbf{(1)}$

Question Number	Acceptable Answers	Additional Guidance	Mark
13(b)(ii)	- calculation of amount of Ce^{4+} - calculation of T in K and V in m^{3} - rearrangement of $p V=n R T$ - calculation of n for arsine - deduction of whole number ratio of $\mathrm{AsH}_{3}: \mathrm{Ce}^{4+}$ (1) - deduction of oxidation state of cerium in product	Example of calculation $\begin{align*} & (488 / 1000) \times 0.102=0.049776(\mathrm{~mol}) \tag{1}\\ & 293 \mathrm{~K}, 350 \times 10^{-6} \mathrm{~m}^{3} \tag{1} \end{align*}$ Allow $0.35\left(\mathrm{dm}^{3}\right)$ for V if P converted to $115(\mathrm{kPa})$ $n=p V / R T$ Can be subsumed in M4 $\begin{aligned} & \left(115000 \times 350 \times 10^{-6}\right) /(8.31 \times 293)=0.016531 \\ & 1: 3 / 0.049776 \div 0.016531=3 \end{aligned}$ Allow 2:7 if molar gas volume used to calculate n $\mathrm{Ce}^{3+} /(+) 3$ Allow TE throughout Allow estimation of n using molar gas volume $=24$ dm^{3} as alternative to M3 and M4 Do not award M6 if 2:7 ratio used in M5 Ignore SF throughout	(6)

Question Number	Answer	Additional Guidance				Mark
15(a)	- calculation of mass of carbon - calculation of mass of hydrogen and oxygen - calculation of moles of carbon, hydrogen and oxygen - calculation of ratio alternative method M 1 moles of $\mathrm{Q}=4.91 \div$ \# $48=$ \# $0.0332(\mathrm{~mol})$ M 2 moles of $\mathrm{CO}_{2}=14.6 \div \# 44=0.332(\mathrm{~mol})$ and moles of $\mathrm{H}_{2} \mathrm{O}=3.58 \div$ \# $8=0.199(\mathrm{~mol})$ M3 calculation of the ratio $10: 12$ M 4 show that $\mathrm{O}=1$ $(10 \times 12)+(12 \times 1)+(16 \times$ number of oxygen atoms) $=148$, so $0=1$	Example of calculation				(4)
			C	H	0	
		mass $=$	$\begin{aligned} & 14.6 \times(12 \div 44) \\ & =3.982(\mathrm{~g}) \end{aligned}$	$\begin{aligned} & 3.58 \times(2 \div 18) \\ & =0.398(\mathrm{~g}) \end{aligned}$	$\begin{aligned} & 4.91- \\ & (3.982+0.398) \\ & =0.53(\mathrm{~g}) \end{aligned}$	
		Moles =	$\begin{align*} & =3.982 \div 12 \tag{1}\\ & =0.332(\mathrm{~mol}) \end{align*}$	$\begin{aligned} & =0.398 \div 1 \\ & =0.398(\mathrm{~mol}) \end{aligned}$	$\begin{aligned} & \hline 0.53 \div 16 \\ & 0.0331 \text { (mol) } \end{aligned}$	
		Ratio	10	12	1	
		Formula $=$	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$			
		Allow TE from M1 to M3				

Question Number	Acceptable Answers	Additional Guidance	Mark
15(b)	An explanation that makes reference to the following points: structure - correct structure chemical shifts - allow any three from four - 4 peaks / chemical shifts means 4 (different) hydrogen environments - peak at 7.5 ppm is due (hydrogen atoms on) benzene ring - peak at 2.3 ppm is due $\mathbf{H}-\mathrm{C}-\mathrm{C}=\mathrm{O} /$ ketone $/ \mathrm{C}=\mathrm{O}$ - peak at 1.0 ppm is due to $\mathbf{H}-\mathrm{C}-\mathrm{C} /$ alkyl group / methyl group / alkane splitting patterns - allow any two from three - peak at 2.3 ppm is a quartet as there are 3 hydrogens on neighbouring carbon / it is bonded to a CH_{3} group Or - peak at 1.0 ppm is a triplet as there are 2 hydrogens on neighbouring carbon / bonded to a CH_{2} (1) Or - peak at 3.6 ppm is a singlet as there are no hydrogens on neighbouring carbon area under curve - (area of 5 for peak at 7.5 ppm) shows the benzene ring has (only) 1 side group / is $\mathrm{C}_{6} \mathrm{H}_{5}$	 Allow chemical environment Ignore references to peak at 3.6 ppm Do not award aldehyde If no reference to neighbouring hydrogens in M4, M5 or M6 allow 1 mark for idea that a quartettriplet pattern is due to $\mathrm{CH}_{2} \mathrm{CH}_{3}$ Ignore references to splitting of peak at 7.5 ppm Allow benzene has 5 H (atoms) DNA if more than 1 side group on structure	(7)

Section C

Question Number	Acceptable Answers	Additional Guidance	Mark
16(a)	An answer that makes reference to the following points: - reaction of benzene with Br_{2} and $\mathrm{FeBr}_{3} / \mathrm{AlBr}_{3}$ - reaction of bromobenzene with Mg - in (dry) ether - structure of Grignard reagent - reaction of Grignard reagent with CO_{2} / - (hydrolysis of acid salt) with dilute HCl Alternative route for M5 and M6 - reaction of Grignard reagent with HCHO - (hydrolysis of acid salt) with dilute HCl and oxidation (of primary alcohol) with acidified $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	See below for reaction scheme Ignore references to heating / refluxing throughout Allow $\mathrm{Fe} \& \mathrm{Br}_{2}$ Allow other halogens and halides Allow aluminium halide M 5 and M 6 with CO_{2} can be shown in the same part of the process providing it it's clear that each step is separate e.g. by labelling (see example below) Allow any dilute acid $/ \mathrm{H}^{+}$ Ignore structure of salt Ignore $\mathrm{H}_{2} \mathrm{O}$	(6)

Allow CO_{2} and HCl as parts 1 and 2 of the final step if clearly labelled e.g.

Question Number	Acceptable Answers	Additional Guidance	Mark
16(b)(i)	An answer that makes reference to the following points: - equation to show formation of electrophile - curly arrow from anywhere on the central ring to positive nitrogen - structure of intermediate - curly arrow from C-H bond to reform the ring - equation showing regeneration of catalyst	$\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$ Or $\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+2 \mathrm{HSO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$ Or $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{NO}_{3}^{+}+\mathrm{HSO}_{4}^{-} \text {and }$ $\mathrm{H}_{2} \mathrm{NO}_{3}^{+} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}$ Do not award $\mathrm{H}_{3} \mathrm{SO}_{5}^{-}$in M 1 but allow as potential TE in M5 Allow curly arrow from anywhere within the hexagon Horseshoe facing the tetrahedral carbon and covering at least three carbon atoms. Some part of the positive charge in the horseshoe Do not award dotted lines unless clearly part of a 3D structure Do not award M4 if substitution position is incorrect $\mathrm{HSO}_{4}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ Allow M5 as part of mechanism, with curly arrow from oxygen of HSO_{4}^{-}to H on benzene ring	(5)

Example of mechanism for 16 bi

Ignore postion of ' + ' in $\mathrm{NO}_{2}{ }^{+}$
No TE from incorrect species from equation in M1 to M2
Use of benzene can score M1, M2, M3 and M5

Question Number	Acceptable Answers	Additional Guidance	Mark
16(b)(ii)	- Sn and (concentrated) $\mathrm{HCl} /$ tin and (concentrated) hydrochloric acid	Allow Fe for Sn Do not award other acids e.g. sulfuric acid Do not award LiAlH_{4} Do not award Sn is a catalyst Do not award dilute HCl Do not award 'followed by NaOH^{\prime} Ignore heating / reflux / stated temperatures	(1)

Question Number	Acceptable Answers	Additional Guidance	Mark
16(b)(iii)	An explanation that makes reference to the following points: - any temperature between $0^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$, inclusive (1) - to prevent formation of by-products / phenol (compounds)	Mark independently Allow just 'less than $10^{\circ} \mathrm{C}$ ' / below $5^{\circ} \mathrm{C}^{\prime}$ Allow to prevent decomposition of HNO_{2} / to prevent decomposition of diazonium ion/ diazonium ion is unstable / to prevent weak C-N bond breaking / prevent formation of (stable) nitrogen Allow reaction is too slow at temperatures below $0^{\circ} \mathrm{C} /$ low temperatures Do not award decomposition of NaNO_{2} / nitro group	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
16(b)(iv)		Ignore additional products Ignore connectivity of -OH group Do not award if OH or COOH are at incorrect positions on ring Do not award carboxylate ion Do not award - N_{2} - in between two rings Do not award $\mathrm{N} \equiv \mathrm{N}$	(1)

Question Number	Acceptable Answers	Additional Guidance	Mark
16(c)	- calculation of molar mass of $\mathrm{Pb}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{2}(1)$ - calculation of amount of $\mathrm{Pb}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{2}$ - deduction of amount of $\mathrm{Ca}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$ - calculation of M_{r} of $\mathrm{Ca}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$ - calculation of mass of water in M_{r} - calculation of amount of water and hence x Alternative route for M4-M6 - calculation of mass of $\mathrm{Ca}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{2}$ - calculation of mass of water in hydrated sample - calculation of amount of water and hence \times (1)	Example of calculation 449.2 can be subsumed within M2 $\begin{equation*} 3.89 / 449.2=8.65984 \times 10^{-3}(\mathrm{~mol}) \tag{1} \end{equation*}$ 1:1 so 8.65984×10^{-3} (mol) M3 can be subsumed in M4 $\begin{align*} & 2.60 / 8.65984 \times 10^{-3}=300.24 \tag{1}\\ & 300.24-(40.1+(14 \times 12)+(1 \times 10)+(4 \times 16) \\ & =18.14 \end{align*}$ $18.14 \div 18=1$, so $\mathrm{x}=1$ Allow TE throughout Correct value for x with no working scores M6 only $\begin{equation*} 8.65984 \times 10^{-3} \times 282.1=2.44 \mathrm{~g} \tag{1} \end{equation*}$ $2.60-2.44=0.16 \mathrm{~g}$ $0.16 \div 18=0.000889 \text {, so } x=1$ Ignore SF except 1 SF for M1-M5	(6)

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

